Загальні відомості

Теорема Піфагора. Прямокутні трикутники мають властивість, яка сформульована в теоремі Піфагора: у прямокутному трикутнику квадрат гіпотенузи дорівнює сумі квадратів катетів. Якщо у деякому трикутнику сума квадратів двох сторін дорівнює квадрату третьої сторони, то такий трикутник є прямокутним. У будь-якому прямокутному трикутнику катет менший від гіпотенузи. Квадрат катета прямокутного трикутника дорівнює різниці квадрата гіпотенузи і квадрата другого катета.


Історичні відомості. Окремі випадки Теореми Піфагора, зокрема щодо так званих єгипетських, або «священних», трикутників зі сторонами 3, 4 і 5, були відомі ще до Піфагора в Стародавньому Єгипті, у Вавилоні, Індії і Китаї. Можливо, Піфагор першим навів доведення цієї теореми. Числа, які можуть бути сторонами прямокутного трикутника, тобто зв’язані залежністю, яку виражає теорема Піфагора, називаються числами Піфагора. Найпростішим прикладом таких чисел є 3, 4 і 5, а також трійки чисел, кратних числам цієї трійки, наприклад, 6, 8 і 10 і так далі. Є нескінченна множина трійок піфагорових чисел. Відповідні їм трикутники називають єгипетськими. Вважають, що єгипетські землеміри будували прямі кути за допомогою мотузки з 12 вузлами на ній, однаково віддаленими один від одного. Мабуть, тому і самих землемірів називали натягувачами мотузокок. В окремих випадках таким прийомом користуються і сьогодні.
Режим доступу: Теорема Піфагора

Немає коментарів:

Дописати коментар